久久精品国产精品九九99
久久精品国产精品九九99
首页 > 讲座预告 > 正文

讲座预告

首页 > 讲座预告 > 正文

非中心化联邦学习的统计推断

发布时间 : 2024-09-05 16:21    点击量:

分享:
久久精品国产精品九九99
久久精品国产精品九九99
2024 9
8 报告时间 2024年9月8日(星期日)11:00
讲座类型 韶峰大讲堂

报告题目:非中心化联邦学习的统计推断

报告人:陈松蹊 中国科学院院士 北京大学

主持人:郑志明 中国科学院院士 北京航空航天大学

报告时间:2024年9月8日(星期日)11:00

报告地点:久久精品国产精品九九99研究生院报告厅

报告摘要:

This paper considers decentralized Federated Learning (FL) under heterogeneous distributions among distributed clients or data blocks for the M-estimation. The mean squared error and consensus error across the estimators from different clients via the decentralized stochastic gradient descent

algorithm are derived. The asymptotic normality of the Polyak-Ruppert (PR) averaged estimator in the decentralized distributed setting is attained, which shows that its statistical efficiency comes at a cost as it is more restrictive on the number of clients than that in the distributed M-estimation. To overcome the restriction, a one-step estimator is proposed which permits a much larger number of clients while still achieving the same efficiency as the original PR-averaged estimator in the non-distributed setting. The confidence regions based on both the PR-averaged estimator and the proposed one-step estimator are constructed to facilitate statistical inference for decentralized Federated Learning.

报告人简介

陈松蹊,中国科学院院士,全国政协委员,北京大学讲席教授,北京大学数学科学学院和光华管理学院教授,中国概率统计学会理事长。主要研究方向为超高维大数据统计分析、环境统计、非参数统计方法等,在超高维假设检验方法和非参数经验似然方法方面取得丰硕成果;注重数理统计的应用,以国家大气污染防治的重大需求为出发点,从事统计学与大气环境交叉学科研究,提出了去除大气监测数据中的气象因素干扰的方法,为精准度量污染排放和评估大气治理效果提供了科学方法。曾获教育部自然科学一等奖,被选为美国科学促进会会士、美国统计学会会士、数理统计学会会士。

湖南国家应用数学中心

湖南韶峰应用数学研究院

到家集团

久久精品国产精品九九99数学与计算科学学院

湖南省数学学会

湘潭市国家高新技术产业开发区

湘潭市大数据和产业创新发展中心

“智能计算与信息处理”教育部重点实验室

“科学工程计算与数值仿真”湖南省重点实验室

“计算科学”湖南省科技创新国际合作基地

关闭

友情链接:

地址:中国湖南湘潭  邮编:411105

版权所有©久久精品国产精品九九99 (湘ICP备18021862号-2) 湘教QS3-200505-000059

久久精品国产精品九九99 湘公网安备 43030202001058号    久久精品国产精品九九99